This Notebook will demonstrate how to import various types of vector GIS data into R.

View Layers for Yosemite National Park

First let’s look at layers in the data folder, by passing the directory to st_layers() from the sf package. This will show us the Shapefiles but not layers that are in ‘containers’, like file geodatabases, geojson files, etc.

library(sf)

## View spatial layers in the data folder.
st_layers("./data")
Driver: ESRI Shapefile 
Available layers:


Import a Shapefile

Import the ‘yose_boundary’ layer (a Shapefile)

yose_bnd_ll <- st_read(dsn="./data", layer="yose_boundary")
Reading layer `yose_boundary' from data source 
  `D:\Workshops\R-Spatial\rspatial_mod\outputs\rspatial_bgs23\notebooks\data' using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 11 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -119.8864 ymin: 37.4947 xmax: -119.1964 ymax: 38.18515
Geodetic CRS:  North_American_Datum_1983
# This also works:
# yose_bnd_ll <- st_read(dsn="./data/yose_boundary.shp")

Note 1: we don’t need to add the .shp extension

Note 2: this code is using convention to name variables yose_bnd_ll.

yose - all Yosemite layers start with this
bnd - tell me this the park boundary
ll - lat-long coordinates


CHALLENGE: View the Object class

Write an expression that returns the class (type) of yose_bnd_ll. Answer

## View the class of the object we just created
class(yose_bnd_ll)
[1] "sf"         "data.frame"

We see that yose_bnd_ll is both a sf object (simple feature data frame) as well as a data.frame. This means we should be able to use the functions designed for either of those objects.

View the properties of yose_bnd_ll by simply running it by itself:

yose_bnd_ll
Simple feature collection with 1 feature and 11 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -119.8864 ymin: 37.4947 xmax: -119.1964 ymax: 38.18515
Geodetic CRS:  North_American_Datum_1983
  UNIT_CODE                                                                           GIS_NOTES
1      YOSE Lands - http://landsnet.nps.gov/tractsnet/documents/YOSE/METADATA/yose_metadata.xml
               UNIT_NAME  DATE_EDIT STATE REGION GNIS_ID     UNIT_TYPE CREATED_BY
1 Yosemite National Park 2016-01-27    CA     PW  255923 National Park      Lands
                                                METADATA PARKNAME                       geometry
1 http://nrdata.nps.gov/programs/Lands/YOSE_METADATA.xml Yosemite POLYGON ((-119.8456 37.8327...


CHALLENGE: Which CRS?

What coordinate reference system is yose_bnd_ll in? Answer

ANS. Unprojected geographic coordinates (lon-lat) in the NAD83 datum.

View the Attribute Table

The names() function returns the column labels of a data frame (in this case the attribute table).

## View column names in the attribute table
names(yose_bnd_ll)
 [1] "UNIT_CODE"  "GIS_NOTES"  "UNIT_NAME"  "DATE_EDIT"  "STATE"      "REGION"     "GNIS_ID"    "UNIT_TYPE" 
 [9] "CREATED_BY" "METADATA"   "PARKNAME"   "geometry"  

Take note of the last column - geometry. That’s where the geometry is saved (we’ll come back to that later).

View the first few rows of the attribute table with head():

head(yose_bnd_ll)
Simple feature collection with 1 feature and 11 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -119.8864 ymin: 37.4947 xmax: -119.1964 ymax: 38.18515
Geodetic CRS:  North_American_Datum_1983
  UNIT_CODE                                                                           GIS_NOTES
1      YOSE Lands - http://landsnet.nps.gov/tractsnet/documents/YOSE/METADATA/yose_metadata.xml
               UNIT_NAME  DATE_EDIT STATE REGION GNIS_ID     UNIT_TYPE CREATED_BY
1 Yosemite National Park 2016-01-27    CA     PW  255923 National Park      Lands
                                                METADATA PARKNAME                       geometry
1 http://nrdata.nps.gov/programs/Lands/YOSE_METADATA.xml Yosemite POLYGON ((-119.8456 37.8327...

Plot the Yosemite Boundary

To plot just the geometry of a sf object (i.e., no symbology from the attribute table), we can use the st_geometry() function.

## Plot the geometry (outline) of the Yosemite boundary
plot(yose_bnd_ll |> st_geometry(), asp=1)


CHALLENGE: Add Axes

Add axes=TRUE to your plot() statement. Answer

## Plot the geometry (outline) of the Yosemite boundary
plot(yose_bnd_ll |> st_geometry(), asp=1, axes=TRUE)


CHALLENGE: Import POI Shapefile

Import the Yosemite Points-of-Interest (POI) Shapefile and plot them. Answer

## Import the yose_poi.shp
yose_poi_ll <- st_read(dsn="./data", layer="yose_poi")
Reading layer `yose_poi' from data source 
  `D:\Workshops\R-Spatial\rspatial_mod\outputs\rspatial_bgs23\notebooks\data' using driver `ESRI Shapefile'
Simple feature collection with 2720 features and 30 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 246416.2 ymin: 4153717 xmax: 301510.7 ymax: 4208419
Projected CRS: NAD83 / UTM zone 11N
plot(yose_poi_ll |> st_geometry())

Import a KML

kml & kmz files can have more than one layer. Hence the source is the kml file, and you must specify the layer by name.

Import a kml containing the National Register of Historic Places in Yosemite in Yosemite. First find the KML file:

## Import KML file
kml_fn <- "./data/yose_historic_pts.kml"
file.exists(kml_fn)
[1] TRUE

View the layers within this KML:

## View the layers in this kml
st_layers(kml_fn)
Driver: KML 
Available layers:

Import:

## Import the 'yosem_historic_places' layer 
yose_hp_ll <- st_read(kml_fn, layer="yose_historic_places")
Reading layer `yose_historic_places' from data source 
  `D:\Workshops\R-Spatial\rspatial_mod\outputs\rspatial_bgs23\notebooks\data\yose_historic_pts.kml' 
  using driver `KML'
Simple feature collection with 35 features and 2 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: -119.8447 ymin: 37.51356 xmax: -119.2165 ymax: 38.08368
Geodetic CRS:  WGS 84

View its properties:

## View properties
yose_hp_ll
Simple feature collection with 35 features and 2 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: -119.8447 ymin: 37.51356 xmax: -119.2165 ymax: 38.08368
Geodetic CRS:  WGS 84
First 10 features:
                                 Name Description                   geometry
1  Hetch Hetchy Railroad Engine No. 6              POINT (-119.786 37.67437)
2             Hodgdon Homestead Cabin              POINT (-119.656 37.53924)
3                       Rangers' Club             POINT (-119.5883 37.74735)
4                    Buck Creek Cabin             POINT (-119.4897 37.56131)
5               Wawona Covered Bridge              POINT (-119.656 37.53859)
6             Crane Flat Fire Lookout             POINT (-119.8207 37.75978)
7      Glacier Point Trailside Museum             POINT (-119.5731 37.72916)
8                      McCauley Cabin             POINT (-119.3676 37.87812)
9                  Bagby Stationhouse             POINT (-119.7862 37.67439)
10                  Great Sierra Mine              POINT (-119.2688 37.9276)

Plot the Historic Places on top of the Park Boundary

Remember to overlay more than one layer on a plot:

  • both layers must have the same CRS
  • include add=TRUE to the plot statements
## Plot the boundary, then the historic places
{plot(yose_bnd_ll |> st_geometry(), asp=1)
plot(yose_hp_ll |> st_geometry(), add=TRUE)}

Import a GeoJSON file

Import the California county boundaries, which is saved as a GeoJSON file.

## Import a Geojson file
counties_fn <- "./data/ca_counties.geojson"
file.exists(counties_fn)
[1] TRUE

View the layers in this GeoJSON file:

## View the layers 
st_layers(counties_fn)
Driver: GeoJSON 
Available layers:

Import the ‘ca_counties’ layer:

## Import the 'ca_counties' layer 
ca_counties_ll <- st_read(counties_fn)
Reading layer `ca_counties' from data source 
  `D:\Workshops\R-Spatial\rspatial_mod\outputs\rspatial_bgs23\notebooks\data\ca_counties.geojson' 
  using driver `GeoJSON'
Simple feature collection with 58 features and 13 fields
Geometry type: MULTIPOLYGON
Dimension:     XYZ
Bounding box:  xmin: -124.4096 ymin: 32.53416 xmax: -114.1312 ymax: 42.00952
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84


CHALLENGE: Plot Counties

Plot the county boundaries. Answer

plot(ca_counties_ll |> st_geometry(), asp=1, axes=TRUE)

Import from a Geodatabase

You can import (but not write to) an ESRI file geodatabase using the sf package. In this case, the source is the folder containing the geodatabase.

Import the Yosemite’s trails from a geodatabase. First find the gdb file:

## Define the path to the file geodatabase (a folder)
gdb_fn <- "./data/yose_trails.gdb"
file.exists(gdb_fn)
[1] TRUE

View the layers in this source:

st_layers(gdb_fn)
Driver: OpenFileGDB 
Available layers:

Import the ‘Trails’ layer

## Import the 'Trails' layer  (case sensitive!)
yose_trails <- st_read(gdb_fn, layer="Trails")
Reading layer `Trails' from data source 
  `D:\Workshops\R-Spatial\rspatial_mod\outputs\rspatial_bgs23\notebooks\data\yose_trails.gdb' 
  using driver `OpenFileGDB'
Simple feature collection with 1074 features and 13 fields
Geometry type: MULTILINESTRING
Dimension:     XY
Bounding box:  xmin: 245134 ymin: 4153668 xmax: 323239.7 ymax: 4250703
Projected CRS: NAD83 / UTM zone 11N

Plot Yosemite’s Trails:

## Plot the trails layer
plot(st_geometry(yose_trails), axes=TRUE)


CHALLENGE: Diagnose a Bad Plot

The following code does not work to make a plot of the park boundary and the trails. Can you tell why? Answer

ANS. Because the CRS are different!

{plot(yose_bnd_ll |> st_geometry())
plot(yose_trails |> st_geometry(), add=TRUE)}

Import from a GeoPackage

Let’s import Yosemite’s watersheds from a geopackage file.

## Import watersheds from a geopackage
gpkg_watershd_fn <- "./data/yose_watersheds.gpkg"
file.exists(gpkg_watershd_fn)
[1] TRUE
st_layers(gpkg_watershd_fn)
Driver: GPKG 
Available layers:
yose_watersheds <- st_read(gpkg_watershd_fn, layer="calw221")
Reading layer `calw221' from data source 
  `D:\Workshops\R-Spatial\rspatial_mod\outputs\rspatial_bgs23\notebooks\data\yose_watersheds.gpkg' 
  using driver `GPKG'
Simple feature collection with 127 features and 12 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 1383.82 ymin: -61442.93 xmax: 81596.71 ymax: 26405.66
Projected CRS: NAD83 / California Albers

Plot the watersheds:

plot(st_geometry(yose_watersheds), axes=TRUE)


CHALLENGE: What CRS?

What CRS are the Yosemite watersheds in? Answer

ANS. California Equal Albers (a common projection for statewide data in California)

st_crs(yose_watersheds)
Coordinate Reference System:
  User input: NAD83 / California Albers 
  wkt:
PROJCRS["NAD83 / California Albers",
    BASEGEOGCRS["NAD83",
        DATUM["North American Datum 1983",
            ELLIPSOID["GRS 1980",6378137,298.257222101,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4269]],
    CONVERSION["California Albers",
        METHOD["Albers Equal Area",
            ID["EPSG",9822]],
        PARAMETER["Latitude of false origin",0,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8821]],
        PARAMETER["Longitude of false origin",-120,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8822]],
        PARAMETER["Latitude of 1st standard parallel",34,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8823]],
        PARAMETER["Latitude of 2nd standard parallel",40.5,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8824]],
        PARAMETER["Easting at false origin",0,
            LENGTHUNIT["metre",1],
            ID["EPSG",8826]],
        PARAMETER["Northing at false origin",-4000000,
            LENGTHUNIT["metre",1],
            ID["EPSG",8827]]],
    CS[Cartesian,2],
        AXIS["easting (X)",east,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["northing (Y)",north,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["State-wide spatial data management."],
        AREA["United States (USA) - California."],
        BBOX[32.53,-124.45,42.01,-114.12]],
    ID["EPSG",3310]]


CHALLENGE: Import another Layer

Look at the other GIS files in the data folder. Select one, import it, and plot it.

## Your answer here
LS0tDQp0aXRsZTogIkltcG9ydCBWZWN0b3IgRGF0YSINCm91dHB1dDogDQogIGh0bWxfbm90ZWJvb2s6DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KLS0tDQoNClRoaXMgTm90ZWJvb2sgd2lsbCBkZW1vbnN0cmF0ZSBob3cgdG8gaW1wb3J0IHZhcmlvdXMgdHlwZXMgb2YgdmVjdG9yIEdJUyBkYXRhIGludG8gUi4NCg0KIyMgVmlldyBMYXllcnMgZm9yIFlvc2VtaXRlIE5hdGlvbmFsIFBhcmsNCg0KRmlyc3QgbGV0J3MgbG9vayBhdCBsYXllcnMgaW4gdGhlIGRhdGEgZm9sZGVyLCBieSBwYXNzaW5nIHRoZSBkaXJlY3RvcnkgdG8gYHN0X2xheWVycygpYCBmcm9tIHRoZSBgc2ZgIHBhY2thZ2UuIFRoaXMgd2lsbCBzaG93IHVzIHRoZSBTaGFwZWZpbGVzIGJ1dCBub3QgbGF5ZXJzIHRoYXQgYXJlIGluICdjb250YWluZXJzJywgbGlrZSBmaWxlIGdlb2RhdGFiYXNlcywgZ2VvanNvbiBmaWxlcywgZXRjLg0KDQpgYGB7ciBjaHVuazAxfQ0KbGlicmFyeShzZikNCg0KIyMgVmlldyBzcGF0aWFsIGxheWVycyBpbiB0aGUgZGF0YSBmb2xkZXIuDQpzdF9sYXllcnMoIi4vZGF0YSIpDQpgYGANCg0KXA0KDQojIyBJbXBvcnQgYSBTaGFwZWZpbGUNCg0KSW1wb3J0IHRoZSAneW9zZV9ib3VuZGFyeScgbGF5ZXIgKGEgU2hhcGVmaWxlKQ0KDQpgYGB7ciBjaHVuazAzfQ0KeW9zZV9ibmRfbGwgPC0gc3RfcmVhZChkc249Ii4vZGF0YSIsIGxheWVyPSJ5b3NlX2JvdW5kYXJ5IikNCg0KIyBUaGlzIGFsc28gd29ya3M6DQojIHlvc2VfYm5kX2xsIDwtIHN0X3JlYWQoZHNuPSIuL2RhdGEveW9zZV9ib3VuZGFyeS5zaHAiKQ0KYGBgDQoNCk5vdGUgMTogd2UgZG9uJ3QgbmVlZCB0byBhZGQgdGhlIC5zaHAgZXh0ZW5zaW9uDQoNCk5vdGUgMjogdGhpcyBjb2RlIGlzIHVzaW5nIGNvbnZlbnRpb24gdG8gbmFtZSB2YXJpYWJsZXMgKnlvc2VfYm5kX2xsKi4NCg0KYHlvc2VgIC0gYWxsIFlvc2VtaXRlIGxheWVycyBzdGFydCB3aXRoIHRoaXMgIA0KYGJuZGAgLSB0ZWxsIG1lIHRoaXMgdGhlIHBhcmsgYm91bmRhcnkgIA0KYGxsYCAtIGxhdC1sb25nIGNvb3JkaW5hdGVzICANCg0KXA0KDQojIyBDSEFMTEVOR0U6IFZpZXcgdGhlIE9iamVjdCBjbGFzcw0KDQpXcml0ZSBhbiBleHByZXNzaW9uIHRoYXQgcmV0dXJucyB0aGUgY2xhc3MgKHR5cGUpIG9mICp5b3NlX2JuZF9sbCouIFtBbnN3ZXJdKGh0dHA6Ly9iaXQubHkvMzljVmpOWikNCg0KYGBge3IgY2h1bmswNH0NCiMjIFZpZXcgdGhlIGNsYXNzIG9mIHRoZSBvYmplY3Qgd2UganVzdCBjcmVhdGVkDQpjbGFzcyh5b3NlX2JuZF9sbCkNCmBgYA0KV2Ugc2VlIHRoYXQgYHlvc2VfYm5kX2xsYCBpcyBib3RoIGEgc2Ygb2JqZWN0IChzaW1wbGUgZmVhdHVyZSBkYXRhIGZyYW1lKSBhcyB3ZWxsIGFzIGEgZGF0YS5mcmFtZS4gVGhpcyBtZWFucyB3ZSBzaG91bGQgYmUgYWJsZSB0byB1c2UgdGhlIGZ1bmN0aW9ucyBkZXNpZ25lZCBmb3IgZWl0aGVyIG9mIHRob3NlIG9iamVjdHMuDQoNClZpZXcgdGhlIHByb3BlcnRpZXMgb2YgKnlvc2VfYm5kX2xsKiBieSBzaW1wbHkgcnVubmluZyBpdCBieSBpdHNlbGY6DQoNCmBgYHtyIGNodW5rMDV9DQp5b3NlX2JuZF9sbA0KYGBgDQoNClwNCg0KIyMgQ0hBTExFTkdFOiBXaGljaCBDUlM/DQoNCldoYXQgY29vcmRpbmF0ZSByZWZlcmVuY2Ugc3lzdGVtIGlzICp5b3NlX2JuZF9sbCogaW4/IFtBbnN3ZXJdKGh0dHA6Ly9iaXQubHkvMzhVWTJ2ZSkNCg0KKipBTlMqKi4gVW5wcm9qZWN0ZWQgZ2VvZ3JhcGhpYyBjb29yZGluYXRlcyAobG9uLWxhdCkgaW4gdGhlIE5BRDgzIGRhdHVtLg0KDQojIyBWaWV3IHRoZSBBdHRyaWJ1dGUgVGFibGUNCg0KVGhlIGBuYW1lcygpYCBmdW5jdGlvbiByZXR1cm5zIHRoZSBjb2x1bW4gbGFiZWxzIG9mIGEgZGF0YSBmcmFtZSAoaW4gdGhpcyBjYXNlIHRoZSBhdHRyaWJ1dGUgdGFibGUpLg0KDQpgYGB7ciBjaHVuazA2fQ0KIyMgVmlldyBjb2x1bW4gbmFtZXMgaW4gdGhlIGF0dHJpYnV0ZSB0YWJsZQ0KbmFtZXMoeW9zZV9ibmRfbGwpDQpgYGANCg0KVGFrZSBub3RlIG9mIHRoZSBsYXN0IGNvbHVtbiAtIGBnZW9tZXRyeWAuIFRoYXQncyB3aGVyZSB0aGUgZ2VvbWV0cnkgaXMgc2F2ZWQgKHdlJ2xsIGNvbWUgYmFjayB0byB0aGF0IGxhdGVyKS4NCg0KVmlldyB0aGUgZmlyc3QgZmV3IHJvd3Mgb2YgdGhlIGF0dHJpYnV0ZSB0YWJsZSB3aXRoIGBoZWFkKClgOg0KDQpgYGB7ciBjaHVuazA3fQ0KaGVhZCh5b3NlX2JuZF9sbCkNCmBgYA0KDQoNCiMjIFBsb3QgdGhlIFlvc2VtaXRlIEJvdW5kYXJ5DQoNClRvIHBsb3QganVzdCB0aGUgZ2VvbWV0cnkgb2YgYSBzZiBvYmplY3QgKGkuZS4sIG5vIHN5bWJvbG9neSBmcm9tIHRoZSBhdHRyaWJ1dGUgdGFibGUpLCB3ZSBjYW4gdXNlIHRoZSBgc3RfZ2VvbWV0cnkoKWAgZnVuY3Rpb24uDQoNCmBgYHtyIGNodW5rMDh9DQojIyBQbG90IHRoZSBnZW9tZXRyeSAob3V0bGluZSkgb2YgdGhlIFlvc2VtaXRlIGJvdW5kYXJ5DQpwbG90KHlvc2VfYm5kX2xsIHw+IHN0X2dlb21ldHJ5KCksIGFzcD0xKQ0KYGBgDQoNClwNCg0KIyMgQ0hBTExFTkdFOiBBZGQgQXhlcw0KDQpBZGQgYGF4ZXM9VFJVRWAgdG8geW91ciBwbG90KCkgc3RhdGVtZW50LiBbQW5zd2VyXShodHRwOi8vYml0Lmx5LzNsd3FvNDgpDQoNCmBgYHtyIGNodW5rMDl9DQojIyBQbG90IHRoZSBnZW9tZXRyeSAob3V0bGluZSkgb2YgdGhlIFlvc2VtaXRlIGJvdW5kYXJ5DQpwbG90KHlvc2VfYm5kX2xsIHw+IHN0X2dlb21ldHJ5KCksIGFzcD0xLCBheGVzPVRSVUUpDQpgYGANCg0KDQpcDQoNCiMjIENIQUxMRU5HRTogSW1wb3J0IFBPSSBTaGFwZWZpbGUNCg0KSW1wb3J0IHRoZSBZb3NlbWl0ZSBQb2ludHMtb2YtSW50ZXJlc3QgKFBPSSkgU2hhcGVmaWxlIGFuZCBwbG90IHRoZW0uIFtBbnN3ZXJdKGh0dHA6Ly9iaXQubHkvM2NTQUVRaSkNCg0KYGBge3IgY2h1bmsxMH0NCiMjIEltcG9ydCB0aGUgeW9zZV9wb2kuc2hwDQp5b3NlX3BvaV9sbCA8LSBzdF9yZWFkKGRzbj0iLi9kYXRhIiwgbGF5ZXI9Inlvc2VfcG9pIikNCnBsb3QoeW9zZV9wb2lfbGwgfD4gc3RfZ2VvbWV0cnkoKSkNCmBgYA0KDQoNCiMjIEltcG9ydCBhIEtNTA0KDQprbWwgJiBrbXogZmlsZXMgY2FuIGhhdmUgbW9yZSB0aGFuIG9uZSBsYXllci4gSGVuY2UgdGhlIHNvdXJjZSBpcyB0aGUga21sIGZpbGUsIGFuZCB5b3UgbXVzdCBzcGVjaWZ5IHRoZSBsYXllciBieSBuYW1lLg0KDQpJbXBvcnQgYSBrbWwgY29udGFpbmluZyB0aGUgTmF0aW9uYWwgUmVnaXN0ZXIgb2YgSGlzdG9yaWMgUGxhY2VzIGluIFlvc2VtaXRlIGluIFlvc2VtaXRlLiBGaXJzdCBmaW5kIHRoZSBLTUwgZmlsZToNCg0KYGBge3IgY2h1bmsxMX0NCiMjIEltcG9ydCBLTUwgZmlsZQ0Ka21sX2ZuIDwtICIuL2RhdGEveW9zZV9oaXN0b3JpY19wdHMua21sIg0KZmlsZS5leGlzdHMoa21sX2ZuKQ0KYGBgDQoNClZpZXcgdGhlIGxheWVycyB3aXRoaW4gdGhpcyBLTUw6DQoNCmBgYHtyIGNodW5rMTJ9DQojIyBWaWV3IHRoZSBsYXllcnMgaW4gdGhpcyBrbWwNCnN0X2xheWVycyhrbWxfZm4pDQpgYGANCg0KSW1wb3J0Og0KDQpgYGB7ciBjaHVuazEzfQ0KIyMgSW1wb3J0IHRoZSAneW9zZW1faGlzdG9yaWNfcGxhY2VzJyBsYXllciANCnlvc2VfaHBfbGwgPC0gc3RfcmVhZChrbWxfZm4sIGxheWVyPSJ5b3NlX2hpc3RvcmljX3BsYWNlcyIpDQpgYGANCg0KVmlldyBpdHMgcHJvcGVydGllczoNCg0KYGBge3IgY2h1bmsxNH0NCiMjIFZpZXcgcHJvcGVydGllcw0KeW9zZV9ocF9sbA0KYGBgDQoNCiMjIFBsb3QgdGhlIEhpc3RvcmljIFBsYWNlcyBvbiB0b3Agb2YgdGhlIFBhcmsgQm91bmRhcnkNCg0KUmVtZW1iZXIgdG8gb3ZlcmxheSBtb3JlIHRoYW4gb25lIGxheWVyIG9uIGEgcGxvdDoNCg0KLSBib3RoIGxheWVycyBtdXN0IGhhdmUgdGhlIHNhbWUgQ1JTICAgDQotIGluY2x1ZGUgYWRkPVRSVUUgdG8gdGhlIHBsb3Qgc3RhdGVtZW50cyAgDQoNCmBgYHtyIGNodW5rMTV9DQojIyBQbG90IHRoZSBib3VuZGFyeSwgdGhlbiB0aGUgaGlzdG9yaWMgcGxhY2VzDQp7cGxvdCh5b3NlX2JuZF9sbCB8PiBzdF9nZW9tZXRyeSgpLCBhc3A9MSkNCnBsb3QoeW9zZV9ocF9sbCB8PiBzdF9nZW9tZXRyeSgpLCBhZGQ9VFJVRSl9DQpgYGANCg0KIyMgSW1wb3J0IGEgR2VvSlNPTiBmaWxlDQoNCkltcG9ydCB0aGUgQ2FsaWZvcm5pYSBjb3VudHkgYm91bmRhcmllcywgd2hpY2ggaXMgc2F2ZWQgYXMgYSBHZW9KU09OIGZpbGUuDQoNCmBgYHtyIGNodW5rMTZ9DQojIyBJbXBvcnQgYSBHZW9qc29uIGZpbGUNCmNvdW50aWVzX2ZuIDwtICIuL2RhdGEvY2FfY291bnRpZXMuZ2VvanNvbiINCmZpbGUuZXhpc3RzKGNvdW50aWVzX2ZuKQ0KYGBgDQoNClZpZXcgdGhlIGxheWVycyBpbiB0aGlzIEdlb0pTT04gZmlsZToNCg0KYGBge3IgY2h1bmsxN30NCiMjIFZpZXcgdGhlIGxheWVycyANCnN0X2xheWVycyhjb3VudGllc19mbikNCmBgYA0KDQpJbXBvcnQgdGhlICdjYV9jb3VudGllcycgbGF5ZXI6DQoNCmBgYHtyIGNodW5rMTh9DQojIyBJbXBvcnQgdGhlICdjYV9jb3VudGllcycgbGF5ZXIgDQpjYV9jb3VudGllc19sbCA8LSBzdF9yZWFkKGNvdW50aWVzX2ZuKQ0KYGBgDQoNClwNCg0KIyMgQ0hBTExFTkdFOiBQbG90IENvdW50aWVzDQoNClBsb3QgdGhlIGNvdW50eSBib3VuZGFyaWVzLiBbQW5zd2VyXShodHRwOi8vYml0Lmx5LzM4WWVXSnMpDQoNCmBgYHtyIGNodW5rMTl9DQpwbG90KGNhX2NvdW50aWVzX2xsIHw+IHN0X2dlb21ldHJ5KCksIGFzcD0xLCBheGVzPVRSVUUpDQpgYGANCg0KIyMgSW1wb3J0IGZyb20gYSBHZW9kYXRhYmFzZQ0KDQpZb3UgY2FuIGltcG9ydCAoYnV0IG5vdCB3cml0ZSB0bykgYW4gRVNSSSBmaWxlIGdlb2RhdGFiYXNlIHVzaW5nIHRoZSBzZiBwYWNrYWdlLiBJbiB0aGlzIGNhc2UsIHRoZSBzb3VyY2UgaXMgdGhlIGZvbGRlciBjb250YWluaW5nIHRoZSBnZW9kYXRhYmFzZS4NCg0KSW1wb3J0IHRoZSBZb3NlbWl0ZeKAmXMgdHJhaWxzIGZyb20gYSBnZW9kYXRhYmFzZS4gRmlyc3QgZmluZCB0aGUgZ2RiIGZpbGU6DQoNCmBgYHtyIGNodW5rMjB9DQojIyBEZWZpbmUgdGhlIHBhdGggdG8gdGhlIGZpbGUgZ2VvZGF0YWJhc2UgKGEgZm9sZGVyKQ0KZ2RiX2ZuIDwtICIuL2RhdGEveW9zZV90cmFpbHMuZ2RiIg0KZmlsZS5leGlzdHMoZ2RiX2ZuKQ0KYGBgDQoNClZpZXcgdGhlIGxheWVycyBpbiB0aGlzIHNvdXJjZToNCg0KYGBge3IgY2h1bmsyMX0NCnN0X2xheWVycyhnZGJfZm4pDQpgYGANCg0KSW1wb3J0IHRoZSAnVHJhaWxzJyBsYXllcg0KDQpgYGB7ciBjaHVuazIyfQ0KIyMgSW1wb3J0IHRoZSAnVHJhaWxzJyBsYXllciAgKGNhc2Ugc2Vuc2l0aXZlISkNCnlvc2VfdHJhaWxzIDwtIHN0X3JlYWQoZ2RiX2ZuLCBsYXllcj0iVHJhaWxzIikNCmBgYA0KDQpQbG90IFlvc2VtaXRl4oCZcyBUcmFpbHM6DQoNCmBgYHtyIGNodW5rMjN9DQojIyBQbG90IHRoZSB0cmFpbHMgbGF5ZXINCnBsb3Qoc3RfZ2VvbWV0cnkoeW9zZV90cmFpbHMpLCBheGVzPVRSVUUpDQpgYGANCg0KXA0KDQojIyBDSEFMTEVOR0U6IERpYWdub3NlIGEgQmFkIFBsb3QNCg0KVGhlIGZvbGxvd2luZyBjb2RlIGRvZXMgKipub3QqKiB3b3JrIHRvIG1ha2UgYSBwbG90IG9mIHRoZSBwYXJrIGJvdW5kYXJ5IGFuZCB0aGUgdHJhaWxzLiBDYW4geW91IHRlbGwgd2h5PyBbQW5zd2VyXShodHRwOi8vYml0Lmx5LzNlU0dPbFopDQoNCioqQU5TKiouIEJlY2F1c2UgdGhlIENSUyBhcmUgZGlmZmVyZW50IQ0KDQoNCmBgYHtyIGNodW5rMjR9DQp7cGxvdCh5b3NlX2JuZF9sbCB8PiBzdF9nZW9tZXRyeSgpKQ0KcGxvdCh5b3NlX3RyYWlscyB8PiBzdF9nZW9tZXRyeSgpLCBhZGQ9VFJVRSl9DQpgYGANCg0KIyMgSW1wb3J0IGZyb20gYSBHZW9QYWNrYWdlDQoNCkxldOKAmXMgaW1wb3J0IFlvc2VtaXRl4oCZcyB3YXRlcnNoZWRzIGZyb20gYSBnZW9wYWNrYWdlIGZpbGUuDQoNCmBgYHtyIGNodW5rMjV9DQojIyBJbXBvcnQgd2F0ZXJzaGVkcyBmcm9tIGEgZ2VvcGFja2FnZQ0KZ3BrZ193YXRlcnNoZF9mbiA8LSAiLi9kYXRhL3lvc2Vfd2F0ZXJzaGVkcy5ncGtnIg0KZmlsZS5leGlzdHMoZ3BrZ193YXRlcnNoZF9mbikNCnN0X2xheWVycyhncGtnX3dhdGVyc2hkX2ZuKQ0KeW9zZV93YXRlcnNoZWRzIDwtIHN0X3JlYWQoZ3BrZ193YXRlcnNoZF9mbiwgbGF5ZXI9ImNhbHcyMjEiKQ0KYGBgDQoNClBsb3QgdGhlIHdhdGVyc2hlZHM6DQoNCmBgYHtyIGNodW5rMjZ9DQpwbG90KHN0X2dlb21ldHJ5KHlvc2Vfd2F0ZXJzaGVkcyksIGF4ZXM9VFJVRSkNCmBgYA0KDQpcDQoNCiMjIENIQUxMRU5HRTogV2hhdCBDUlM/DQoNCldoYXQgQ1JTIGFyZSB0aGUgWW9zZW1pdGUgd2F0ZXJzaGVkcyBpbj8gW0Fuc3dlcl0oaHR0cDovL2JpdC5seS8zOFhlUE83KQ0KDQoqKkFOUyoqLiBDYWxpZm9ybmlhIEVxdWFsIEFsYmVycyAoYSBjb21tb24gcHJvamVjdGlvbiBmb3Igc3RhdGV3aWRlIGRhdGEgaW4gQ2FsaWZvcm5pYSkNCg0KYGBge3IgY2h1bmsyN30NCnN0X2Nycyh5b3NlX3dhdGVyc2hlZHMpDQpgYGANCg0KXA0KDQojIyBDSEFMTEVOR0U6IEltcG9ydCBhbm90aGVyIExheWVyDQoNCkxvb2sgYXQgdGhlIG90aGVyIEdJUyBmaWxlcyBpbiB0aGUgZGF0YSBmb2xkZXIuIFNlbGVjdCBvbmUsIGltcG9ydCBpdCwgYW5kIHBsb3QgaXQuDQoNCmBgYHtyIGNodW5rMzF9DQojIyBZb3VyIGFuc3dlciBoZXJlDQpgYGANCg0KDQoNCg==